
Technical Walkthrough - ION

Nichlas Karlsson, Senior Software Engineer, Shared Technology

Agenda 1(3)

M3 BE ION enablement – overview

Message flows

Applications

Deliverables

Event rules

BOD mappings

Copyright © 2011 Lawson. All rights reserved. 2

Agenda 2(3)

MEC details

Communication

ION

Event Hub

Control properties

Check Order

Error handling

MEC Utilities

Mapping tool

New Eclipse plugin

Graphical programming

Copyright © 2011 Lawson. All rights reserved. 3

Agenda 3(3)

Mapping tool

Eclipse plugin

Graphical programming

Copyright © 2011 Lawson. All rights reserved. 4

Technical Walkthrough - ION

M3 BE ION enablement – overview

Copyright © 2010 Infor. All rights reserved. 5

M3 BE ION enablement – overview

The following products are used for M3 BE ION
enablement:

M3 Enterprise Collaborator (MEC) v9.2

Runs on Grid

Event Hub (including Event Analytics) v1.2

Requires that M3 BE runs on Grid

Copyright © 2011 Lawson. All rights reserved. 6

Message flows – outbound

When an item is changed in M3 BE the BOD
SyncItemMaster will be sent to ION since M3 BE is System
Of Record (SOR) for ItemMaster

Copyright © 2011 Lawson. All rights reserved. 7

Message flows – outbound

1. A user changes the item in M3 BE

2. An event is created in M3 BE’s database layer when the
MITMAS (item master) record is updated

3. The event is posted to the Event Hub

Copyright © 2011 Lawson. All rights reserved. 8

Message flows – outbound

4. Event Analytics subscribes to the MITMAS event

5. One or several rules are fired in Event Analytics when the
MITMAS event is received

6. One of the rules creates a new event that has the purpose
to trigger MEC to create a SyncItemMaster BOD

Copyright © 2011 Lawson. All rights reserved. 9

Message flows – outbound

7. The new SyncItemMaster event is posted to the Event
Hub

8. MEC subscribes to the SyncItemMaster event

9. MEC detects a partner agreement, which defines
processes to execute

Copyright © 2011 Lawson. All rights reserved. 10

Message flows – outbound

10.An XML Transform process semantically maps the event
data to a SyncItemMaster BOD

 The event data is complemented by M3 BE data by calling M3 BE
APIs

 All semantic transformation and data formatting, translation and
restructuring take place in this process

Copyright © 2011 Lawson. All rights reserved. 11

Message flows – outbound

11.A send process sends the SyncItemMaster BOD to ION
via the ION outbox database tables

12. ION fetches the SyncItemMaster BOD from the outbox
database tables

Copyright © 2011 Lawson. All rights reserved. 12

Message flows – inbound

A non-SOR application sends a ProcessItemMaster BOD to
M3 BE

M3 BE will send back the reply BOD
AcknowledgeItemMaster

Copyright © 2011 Lawson. All rights reserved. 13

Message flows – inbound

1. ION puts the ProcessItemMaster BOD into the inbox
database tables

2. MEC fetches the BOD from the ION inbox database tables

3. MEC detects a partner agreement, which defines
processes to execute

Copyright © 2011 Lawson. All rights reserved. 14

Message flows – inbound

4. An XML Transform process semantically maps the
ProcessItemMaster BOD data to M3 BE format

 M3 BE is updated by calling M3 BE APIs

 All semantic transformation and data formatting, translation and
restructuring take place in this process

Copyright © 2011 Lawson. All rights reserved. 15

Message flows – inbound

5. The reply BOD AcknowledgeItemMaster can either be
created synchronously by the same XML transform
process and then be sent back to ION, or asynchronously
when an M3 BE event triggers a separate outbound
message flow

Copyright © 2011 Lawson. All rights reserved. 16

Message flows – inbound

6. If there is an error in the XML transform process a
ConfirmBOD is sent to ION as well as an
AcknowledgeItemMaster BOD with actionCode “Rejected”

 The agreement’s error processes takes care of this!

Copyright © 2011 Lawson. All rights reserved. 17

Message flows – inbound

7. Since an update of the MITMAS record in M3 BE is done
by the XML transform process an application event
triggers a separate outbound message flow for the
SyncItemMaster BOD

Copyright © 2011 Lawson. All rights reserved. 18

Message flows – Async. Acknowledge BOD

Copyright © 2011 Lawson. All rights reserved. 19

Technical Walkthrough - ION

Applications

Copyright © 2010 Infor. All rights reserved. 20

Applications – Deliverables

The delivery package for ”a BOD” consists of

MEC mapping

Event Analytics rules for outbound BODs

Common deliverables are

BOD Mappings and Descriptions documentation in PDF format

 Installation and setup documentation

Includes references to required M3 BE MCE packages

Copyright © 2011 Lawson. All rights reserved. 21

Applications – Event rules

 Problems:

 The M3 BE database structure does not match BOD data structures

 Modifications of a record in one M3 BE table can trigger zero, one or
several BODs

 The triggering of BODs may also depend on the data itself

 For example you do not want to send a BOD to ION when only data that is
not included in the BOD has changed in M3 BE

 Solution: Send M3 BE database events to a rules engine!

 Event Analytics subscribes to M3 BE database events and
applies rules on these

 You can write everything from basic to very sophisticated rules using
the built-in JBoss Drools Expert rules engine

Copyright © 2011 Lawson. All rights reserved. 22

Applications – Event rules

 The purpose of these rules is to create new events that
correspond to the BODs to be created

 These events are posted to the Event Hub and MEC then
subscribes to them

Copyright © 2011 Lawson. All rights reserved. 23

Applications – Event rules

 Here are the rules delivered for the noun ItemMaster:

 Changes in the following M3 BE
tables trigger a SyncItemMaster
BOD to be sent to ION:

 MITMAS (ItemMaster/ItemHeader)

 MITLAD (ItemMaster/ItemHeader)

 MITFAC (ItemMaster/ItemHeader)

 MITBAL (ItemMaster/ItemLocation)

 MHIMAS triggers an
AcknowledgeItemMaster BOD to be
sent to ION

Copyright © 2011 Lawson. All rights reserved. 24

Applications – Event rules – example

Copyright © 2011 Lawson. All rights reserved. 25

. . .

declare HubEvent

@typesafe(false)

end

rule "annotations (MITMAS to MITMAS_UPDATE)"

@subscription(M3:MITMAS:U)

@subscription1(VF_MITMAStoMITMAS_UPDATE:MITMAS:U)

then

end

rule "Create virtual fields (MITMAS to MITMAS_UPDATE)"

no-loop

when

event : HubEvent(

publisher == "M3",

documentName == "MITMAS",

(

operation == EventOperation.UPDATE

) &&

(elementOldValues["STAT"] >= 20 && elementValues.STAT >= 20) &&

(elementValues.FUDS != elementOldValues["FUDS"] || elementValues.CPUN !=

elementOldValues["CPUN"] || elementValues.STAT != elementOldValues["STAT"] ||

elementValues.SALE != elementOldValues["SALE"] || elementValues.INDI !=

elementOldValues["INDI"] || elementValues.STCD != elementOldValues["STCD"] ||

elementValues.CHCD != elementOldValues["CHCD"] || elementValues.BUAR !=

elementOldValues["BUAR"] || elementValues.ITCL != elementOldValues["ITCL"] ||

elementValues.ITGR != elementOldValues["ITGR"] || elementValues.PRGP !=

elementOldValues["PRGP"] || elementValues.UNMS !=

elementOldValues["UNMS"])

)

then

Event $MITMAS_UPDATE = new Event("SyncItemMaster",

event.getOperation());

$MITMAS_UPDATE.setTrackingId(event.getTrackingId());

// Key fields

// Fields

$MITMAS_UPDATE.addElement("CONO", event.getElementValue("CONO"));

$MITMAS_UPDATE.addElement("ITNO", event.getElementValue("ITNO"));

// Calculation fields

// Virtual fields

// Unique key

String $keyValue = event.getElementValue("keyValue");

$MITMAS_UPDATE.addElement("keyValue", $keyValue);

// Origin key value

String $originKeyValue = event.getElementValue("originKeyValue");

if($originKeyValue == null){

$originKeyValue = event.getElementValue("keyValue");

}

$MITMAS_UPDATE.addElement("originKeyValue", $originKeyValue);

// Origin fields

String $originPublisher = event.getElementValue("originPublisher");

if($originPublisher == null){

$originPublisher = event.getPublisher();

}

$MITMAS_UPDATE.addElement("originPublisher", $originPublisher);

String $originDocument = event.getElementValue("originDocument");

if($originDocument == null){

$originDocument = event.getDocumentName();

}

$MITMAS_UPDATE.addElement("originDocument", $originDocument);

$MITMAS_UPDATE.postEvent();

end

Applications – BOD mapping

 MEC mappings do the semantic transformation and data
formatting, translation and restructuring between M3 BE
and BODs

 For outbound messages the input is the event from the
Event Hub (in XML format) and the output is the BOD

 For inbound messages the input is the BOD and the
output, if exists, is a reply BOD (i.e. Acknowledge or
Show)

Copyright © 2011 Lawson. All rights reserved. 26

Applications – BOD mapping

 In the mapping you can fetch data from M3 BE and/or
update data in M3 BE via calls to M3 BE APIs

 A MEC mapping is delivered as metadata in a .map file
plus the XML schemas (.xsd files) used for the mapping

Copyright © 2011 Lawson. All rights reserved. 27

Applications – BOD mapping – example

Copyright © 2011 Lawson. All rights reserved. 28

Technical Walkthrough - ION

MEC details

Copyright © 2010 Infor. All rights reserved. 29

MEC details – Communication

MEC v9.2 contains two new communication protocols:

 IONDbIn – polls BODs from ION inbox database tables

 IONDbOut – puts a BOD into the ION outbox database tables

MEC v9.2 Event Hub Subscriber receive protocol allows
several communication channel instances (for ordering)

Copyright © 2011 Lawson. All rights reserved. 30

MEC details – Communication – IONDbIn

 IONDbIn setup in Partner Admin Tool:

 Runtime communication channels:

Copyright © 2011 Lawson. All rights reserved. 31

MEC details – Communication – IONDbOut

 IONDbOut setup in Partner Admin Tool:

Copyright © 2011 Lawson. All rights reserved. 32

MEC details – Communication – IONDbOut

 The ION outbox tables need to be populated with data in
addition to the actual BOD

 This is handled by the Send process when using the
IONDbOut protocol

 A lot of information is taken from the manifest and needs
to be set correctly

 Static information for the BOD should be set in the BOD mapping
since this is not to be configured at the customer

 Installation dependable information is set using control properties for
the partner agreement, for example from and to logical IDs

 The following slide contains a summary for how this
additional data is set by IONDbOut

Copyright © 2011 Lawson. All rights reserved. 33

MEC details – Communication – IONDbOut

 BODType (header)

1. map:ionBODType * P

2. agr:ionBODType **

3. throw exception

 ToLogicalId (header)

1. if verb is Confirm: “lid://default” P

2. map:ionToLogicalId *

3. agr:ionToLogicalId ** P

4. if verb is Acknowledge or Show:
com:ionFromLogicalId *** P (warning if missing)

5. “lid://default”

 MessageId (header)

1. map:ionMessageId *

2. new UUID P

 FromLogicalId (header)

1. map:ionFromLogicalId *

2. agr:ionFromLogicalId ** P

3. send communication object property ‘FromLogicalId‘

4. throw exception

 MessagePriority

1. map:ionMessagePriority *

2. agr:ionMessagePriority **

3. send communication object property
'MessagePriority’

4. “4”

Copyright © 2011 Lawson. All rights reserved. 34

 TenantId

1. map:ionTenantId * P

2. send communication object property 'TenantId'

3. “infor”, warning

 Encoding (header)

1. Current encoding from manifest P

2. “UTF-8”

 ReferenceId (header)

1. map:ionReferenceId * P

2. if verb is Acknowledge or Show:
com:ionMessageId *** P (throw exception if missing)

 BODId (header)

1. map:ionBODId *

2. agr:ionBODId **

3. don't set header (not mandatory)

 VariationId (header)

1. map:ionVariationId *

2. com:ionVariationId ***

3. don't set header (not mandatory)

* Manifest item set in mapping

** Manifest item set for agreement or group

*** Manifest item set by IONDbIn

P Preferred

MEC details – Communication – testing

Note: Always test your BOD mappings using the IONDbIn
and IONDbOut communication protocols!

You can start testing using DiskIn and DiskOut, but since
the ION communication uses manifest data set by the
mapping and by agreement control properties you must
also test using ION communication

Copyright © 2011 Lawson. All rights reserved. 35

MEC details – Communication – testing

 It is possible to set up a ”virtual” application (X3) in MEC
and have ION route documents between M3 BE and X3

When dropping a test file into the Input/X3 folder ION will route the
BOD to M3 BE

When sending a BOD from M3 BE to X3 the XML file will be created
in the folder Output/X3

The MEC setup is quite schizofrenic, when you understand how to do
this then you have graduated!

Copyright © 2011 Lawson. All rights reserved. 36

 Event Hub Subscriber setup in Partner Admin Tool:

 Runtime communication channels:

MEC details – Communication – Event Hub

Copyright © 2011 Lawson. All rights reserved. 37

 Event Hub Subscription setup in Partner Admin Tool:

 You can assign a subscription to a communication channel

MEC details – Communication – Event Hub

Copyright © 2011 Lawson. All rights reserved. 38

 Use control properties in Partner Administrator Tool to set
up from and to logical IDs for ION

 Enter from logical ID on the M3BE group:

 Enter to logical ID on the application group:

MEC details – Control properties

Copyright © 2011 Lawson. All rights reserved. 39

 ION Connect does not guarantee delivery of BODs in the
correct order

 You can for example set up work flows in ION that will delay some
BODs

 On the noun ID element there is an attribute ”variationID”
that contains a sequence number

 When a Sync BOD is sent out from a system, a variationID
is required

MEC details – Check Order

Copyright © 2011 Lawson. All rights reserved. 40

 This variationID can be used at the receiving end to
discover messages that are received out of sequence

 It is in our best interest to try to keep messages in sequence across
the bus, but in a multi-threaded environment this cannot be
guaranteed

 The variationID is an integer value that needs to be in the range of -
2^63 (-9,223,372,036,854,775,808) and 2^63-1
(9,223,372,036,854,775,807)

MEC details – Check Order

Copyright © 2011 Lawson. All rights reserved. 41

 We guarantee correct variationID on outbound Sync BODs
per primary key

 All events for outbound Sync BODs has to be received on
an ordered Event Hub Subscriber communication channel

 Property Ordered = 1

 A unique variationID (manifest item com:ionVariationId)
must be generated by the communication channel

 Property SetVariationId = 1

 The first process in the partner agreement must be ”Check
Order”

MEC details – Check Order – outbound

Copyright © 2011 Lawson. All rights reserved. 42

 XPaths to all primary key elements in the event must be
given for Check Order

 For example /EventData/Document/ElementData[1]/Value for CONO
and /EventData/Document/ElementData[2]/Value for ITNO

 The Check Order process sequenciates messages with
the same primary key – other messages are processed in
parallell

 Thus performance is maximized!

MEC details – Check Order – outbound

Copyright © 2011 Lawson. All rights reserved. 43

 This is what we do:

 Keep track of the variationID for the latest successfully processed
BOD per primary key

 Example: Primary key for SyncBillOfMaterials is TenantID (CONO) +
ID@accountingEntity (DIVI) + ID@location (FACI) + ID (PRNO)

 If a received BOD has a variationID less than the latest variationID
for its primary key it is discarded

 A Sync BOD always replaces all existing data, hence an old Sync BOD
can be discarded

 If a received BOD has a variationID greater than the latest
variationID for its primary key, and another BOD with the same
primary key is currently being processed, the new BOD will be
processed after the other BOD has finished processing

 Other BODs are processed in parallell to maximize performance

 If the processing fails the latest variationID for the primary key is
reset to its previous variationID

MEC details – Check Order – inbound

Copyright © 2011 Lawson. All rights reserved. 44

 All inbound Sync BODs has to be received on an ordered
IONDbIn communication channel

 Property Ordered = 1

 The first process in the partner agreement must be ”Check
Order”

 XPaths to all primary key elements in the event must be
given for Check Order

 XPath for the variationID attribute must also be given

 The Check Order process discards messages with an old
variationID and sequenciates messages with the same
primary key – other messages are processed in parallell

MEC details – Check Order – inbound

Copyright © 2011 Lawson. All rights reserved. 45

 Example on Check Order set up for inbound
SyncBillOfMaterials:

MEC details – Check Order

Copyright © 2011 Lawson. All rights reserved. 46

 For all inbound messages (received from ION) that fails in
MEC it is required to send a ConfirmBOD BOD back to
ION

 There is a new error process available in MEC v9.2, ”Crt
ConfirmBOD”, that creates a ConfirmBOD automatically

 The information given in the MEC error email will be given as error
description

 Crt ConfirmBOD automaticaly includes the received BOD (base64
encoded) in the ConfirmBOD as original BOD according to ION
specifications

 The error processes for all inbound agreements must start
with the processes Crt ConfirmBOD followed by the
process Send with the protocol IONDbOut

MEC details – Error handling

Copyright © 2011 Lawson. All rights reserved. 47

 IONToolbox and IONApplicationArea are new MEC
utility classes included in MEC v9.2

 IONToolbox contains methods to be used for

 ApplicationArea handling – getSystemEnvironmentCode(), getSenderLogicalID(),
getMappingVersion(), getBEVersion()

 LocationID handling – createLocationID(), getFACIFromLocationID(),
getWHLOFromLocationID()

 String handling – isEmpty(), rightTrim()

 Date handling – normalizeXMLDateTime(), createNormalizedXMLDateTime()

 ActionCode handling – createSyncActionCode(), createProcessActionCode()

 Constants for all valid action codes – ACTION_CODE_ADD,
ACTION_CODE_CHANGE, ACTION_CODE_REPLACE, ACTION_CODE_DELETE,
ACTION_CODE_ACCEPTED, ACTION_CODE_REJECTED

 Error handling (for Acknowledge BODs) – getReasonFromStackTrace()

MEC details – MEC Utilities

Copyright © 2011 Lawson. All rights reserved. 48

 IONApplicationArea is used when you need to send a
reply Acknowledge BOD asynchronously

 You need to store the received message's from logical ID, message
ID (to be used as reference ID for the Acknowledge BOD) and
ApplicationArea values in the MEC database

 This data will be used by the Acknowledge BOD mapping

 A new MEC API DBMap is used for storing data in the MEC database

 Note: You need to store a correlation ID in M3 BE!

 Default is the MEC message UUID

MEC details – MEC Utilities

Copyright © 2011 Lawson. All rights reserved. 49

Technical Walkthrough - ION

Mapping tool

Copyright © 2010 Infor. All rights reserved. 50

Mapping tool – Eclipse plugin

A newly developed generic mapping tool, implemented as
an Eclipse plug-in

The new mapping tool has a very generic framework built
on plug-ins to separate the basic mapping functionality
from the business document format and the backend API
format

Currently there are plug-in implementations for XML schemas and
M3 API to replace the old MEC mapping tool, but other plug-ins can
easily be developed

Use (for example) Subversion for code versioning

Save the mapping metadata to the MEC database for
runtime deployment

Copyright © 2011 Lawson. All rights reserved. 51

Mapping tool – Graphical programming

Graphical representation of input and output XML schemas

Supports ION BOD XML schemas as is

Not possible with the old MEC mapping tool

Use loops, M3 APIs, Java functions, boolean functions,
global variables and constants

Graphical mapping of data and loop control

Since the BOD XML schemas are used to parse and
generate the XML documents the correct XML structure is
always applied!

You can also automatically perform XML validation in runtime by
using the Validate process in the partner agreement

Copyright © 2011 Lawson. All rights reserved. 52

Mapping tool – Mapping standards

The following mapping functions should be inserted into
your repository to be used as standard functions for BOD
mappings:

SetHeader – sets root element attributes plus ApplicationArea values
for outbound BODs

GetProcessHeader – gets ApplicationArea values to be used with
asynchronous Acknowledge BOD mappings

SetAcknowledge – sets Acknowledge verb values for outbound
asynchronous Acknowledge BODs

SetProcess – sets Process verb values for outbound Process BODs

SetSync – sets Sync verb values for outbound Sync BODs

SetOutboxHeaderData – sets manifest items used by IONDbOut
send protocol (for outbox header table)

Must always be used for outbound BOD mappings!

Copyright © 2011 Lawson. All rights reserved. 53

Mapping tool – BOD mapping – example

Copyright © 2011 Lawson. All rights reserved. 54

Mapping tool – Java code example

Copyright © 2011 Lawson. All rights reserved. 55

/**

* Set root element attributes plus ApplicationArea(created from repository)

*/

private void setHeader() {

// Set OAGIS release

oReleaseID = "9.2";

// Set version of the given BOD definition

oVersionID = "2.6.2";

// Set "Test" or "Production" (default) mode

oSystemEnvironmentCode = IONToolbox.getSystemEnvironmentCode(myMap);

// Instantiate generic DataTranslator

String blankDIVI = "";

dtGen = new DataTranslator(myMap, iCONO, blankDIVI, "ION", "1", "Generic");

// Set language for the contents of the BOD

if (iLANC != null) {

oLanguageCode = dtGen.toMessage("Generic", "languageCode", iLANC, "", "", "CSYTAB","LNCD");

}

// Set from logical ID

oLogicalID = IONToolbox.getSenderLogicalID(myMap);

// Set MEC mapping version

oLogicalID_schemeVersionID = IONToolbox.getMappingVersion(myMap);

// Set business application that issued the BOD

oComponentID = "M3BE";

// Set M3 BE version

oComponentID_schemeVersionID = IONToolbox.getBEVersion(myMap);

// Set date time stamp that the given instance of the BOD was created (UTC)

oCreationDateTime = IONToolbox.normalizeXMLDateTime(iSentTimestamp);

// Set GUID that will make each BOD instance uniquely identifiable, default MEC message UUID

if (iBODID != null) {

oBODID = iBODID;

} else {

oBODID = strUUID; // Example: "bf941e3f-c28a-4411-9a31-067d4d26c686"

}

}

Copyright © 2011 Lawson. All rights reserved. 56

